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What is Uncertainty in Machine Learning?

Training Set (Dogs vs Cats)
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What output probabilities
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What is Uncertainty in Machine Learning?
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FER+ fataset, with crowd sourced labels for emotion recognition, over
classes Neutral, Happinesss, Surprise, Sadness, Anger, Disgust, Fear,

and Contempt.
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What is Uncertainty in ML?

• Real-world datasets are typically unbalanced, so confidences on
each class should be different, reflecting the training data and model
inferences.

• Real-world datasets might contain noise, like imprecise labels,
ambiguous measurements, or sensor noise. A model should be
aware of this.

• Most neural networks are overconfident, meaning that softmax
confidences do not have a good probabilistic interpretation and
could be misleading.
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What do Classical Models Lack?

• Most machine learning models do not explicitly model uncertainty at
their outputs.

• They produce point-wise predictions. A model with uncertainty
outputs a distribution.

• A distribution can usually include more information than a single
point-wise prediction, for example, mean and variance for a
regression output instead of just a point prediction.

• Neural networks are often overconfident, producing wrong
predictions with high confidence.
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What do Classical Models Lack?
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Practical Applications of Uncertainty

• Reliable confidence estimates can be used to detect misclassified
examples or when the model is extrapolating.

• A model can reject to produce an output if the uncertainty is too
high, for example, to require human processing instead of
automated. This is called out of distribution detection.

• The confidence or uncertainty of a prediction tells the human how
much it should really trust the prediction.

• Additional decision making can be made with a realistic confidence
score, which is very important for medical and human-interaction
applications.
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Types of Uncertainty

Aleatoric Uncertainty

Uncertainty that is inherent to the data, for example, sensor noise,
stochastic processes.
Cannot be reduced by adding more information.

Epistemic Uncertainty

Uncertainty produced by the model, for example, model misspecification,
class imbalance, lack of training data.
Can be reduced by adding more information to the training process.
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Aleatoric Uncertainty

The simplest example of AU is measurements corrupted by additive
noise, like f(x) = x3 + ε Where ε ∼ N (0, σ2) and x3 would be the true
function.
If σ2 is constant, this is called homoscedatic noise, if σ2 is a function of
the input or variable, then it is called heteroscedatic noise.

0 20 40
0

20

40

60

Homoscedatic

0 20 40

0

50

100

Heteroscedatic

Uncertainty Quantification in Computer Vision and Robotics - Dr. Valdenegro 10/37



Epistemic Uncertainty

0 20 40

0

1,000

2,000

Model Misspecification Variations on Training Data

Uncertainty Quantification in Computer Vision and Robotics - Dr. Valdenegro 11/37



Bayesian Formulation

A Bayesian Neural Network is one where weights are probability
distributions, instead of point estimates. Weight distributions implicitly
encode uncertainty in the network.
This requires radically different inference algorithms to learn these
distributions from data, this talk does not cover this. The Bayesian
predictive posterior for y from inputs x and weight distributions θ is:

p(y |x) =
∫

Θ
p(y |x, θ)P (θ |x)dθ

This is called Bayesian model averaging, as weights are sampled from
the learned weight distributions, and used to produce output estimates,
weighted by the probability of each weight. This makes estimating the full
posterior computationally very expensive, so it is rarely used in practice.
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Calibration

• We talked about a concept that indicates how much we can trust the
confidence of a model.

• This can be formalized by comparing task performance (such as
accuracy) as the confidence of predictions change.

• For example, if a prediction is made with 10% confidence, then we
expect that such predictions will be correct 10% of the time.

• And correspondingly, if a prediction is made wit 90% confidence,
then only 10% of such predictions will be incorrect.
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Calibration - Reliability Plots

• Calibration can be observed by making a Reliability plot.

• We take the predictions of a model over a dataset, divide the
predictions by confidence values conf(Bi) into bins Bi, for each bin
the accuracy acc(Bi) is computed, and then the values
(conf(Bi), acc(Bi)) are plotted.

• Regions where conf(Bi) < acc(Bi) indicate that the model is
underconfident, while regions conf(Bi) > acc(Bi) indicate
overconfidence.

• The line conf(Bi) = acc(Bi) indicates perfect calibration.
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Calibration - Reliability Plots
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Challenges of DL in Robotics [Sünderhauf
et al. 2018]

• Machine/Deep Learning and Computer Vision by itself is quite
different from Robotics. The main difference is that a robot has a
"body".

• A good description paper about this topic is "The Limits and
Potentials of Deep Learning for Robotics" by Sünderhauf et al. 2018.

• Embodiment is the main difference between Robot
Learning/Perception and their more theoretical fields of
Machine/Deep Learning and Computer Vision.

Uncertainty Quantification in Computer Vision and Robotics - Dr. Valdenegro 17/37



Challenges of DL in Robotics [Sünderhauf
et al. 2018]
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Challenges of DL in Robotics - Learning
[Sünderhauf et al. 2018]

Level Name Description
5 Active Learning The system is able to select the most informative samples

for incremental learning on its own in a data-efficient way. It
can ask the user to provide labels.

4 Class-Incremental
Learning

The system can learn new classes, preferably using low-
shot or one-shot learning techniques, without catastrophic
forgetting. The system requires the user to provide these
new training samples along with correct class labels.

3 Incremental Learning The system can learn off new instances of known classes
to address domain adaptation or label shift. It requires the
user to select these new training samples.

2 Identify Unknowns In an open-set scenario, the robot can reliably identify in-
stances of unknown classes and is not fooled by out-of dis-
tribution data.

1 Uncertainty
Estimation

The system can correctly estimate its uncertainty and re-
turns calibrated confidence scores that can be used as
probabilities in a Bayesian data fusion framework. Current
work on Bayesian Deep Learning falls into this category.

0 Closed-Set Assump-
tions

The system can detect and classify objects of classes
known during training. It provides uncalibrated confidence
scores.
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Challenges and Applications

Medical Systems and Decision Making

Practically all medical applications require correct (epistemic) uncertainty
estimates to be used with humans/animals, receive regulatory approval,
and be useful for practitioning medical doctors to make decisions.

Robotics

Generally in Robotics, useful uncertainties are not modeled, for example
uncertainty in dynamical systems (parameters), perception (object
detection), or estimate when robot capabilities are being extrapolated.
The best example is autonomous driving.
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Challenges and Applications

Reinforcement Learning

In the same way, it is very important to have RL-learned policies that can
estimate their own epistemic uncertainty, and not take an action when
the environment is too different from the training one.

• RL in robots or real mechanisms, with safety constraints (Safe RL).

• RL in non-stationary environments (for example, dynamic or
unpredictable obstacles).

• Reduce the sample complexity required for training through Active
Learning and Exploration.
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Objective - Safe and Trustable Robots
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Objective - Safe and Trustable Robots

Examples

• Multiple incidents of experimental Autonomous Vehicles hitting
human pedestrians and producing accidents, due to conditions not
considered in development/training (similar to Kidnapped Robot
Problem).

• Possible issues with Robots at care homes for the elderly.
Algorithms should be tuned for maximum safety.

• Well known examples of face recognition being biased against some
skin colors, OOD detection can help in preventing or alleviate these.

• AI/Robotics should be done for the social good.
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Out of Distribution Detection (OOD) -
MNIST vs Fashion MNIST

MNIST
1.411963 1.415481 1.420386 1.435212 1.446755 1.454201 1.469984 1.496932 1.577835 1.584055

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Fashion MNIST
2.004164 2.005848 2.009625 2.009688 2.015045 2.015873 2.036938 2.051112 2.052563 2.154850

0.000000 0.000001 0.000001 0.000001 0.000002 0.000002 0.000002 0.000003 0.000004 0.000005
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Out of Distribution Detection (OOD) -
Sinusoid Regression with an Ensemble

Here the training set is x ∈ [−8, 8]. You can observe that outside of this
range the standard deviation (uncertainty) increases considerably, and
increases with the distance to the training set.
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Sub-Ensembles [Valdenegro. 2019]

• A great problem with Ensembles is that computational costs
increase linearly with the number of members in the ensemble.

• A basic question is: Is it necessary that all ensemble members be
independent? Can weights be shared across ensemble members?

• Turns out the answer is no and yes, weights on layers from the input
can be shared, and last layers in the network ensembled, and this
works as an approximation of the full ensemble.
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Sub-Ensembles [Valdenegro. 2019]
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Sub-Ensembles - Performance

Presented at the Bayesian Deep Learning Workshop @ NeurIPS 2019.
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Uncertainty in Emotion Classification
[Matin et al. 2020.]
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Uncertainty in Point Cloud Segmentation
[Bhandary et al. 2020]
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Uncertainty in Point Cloud Segmentation
[Bhandary et al. 2020]

Entropy (Right) Ground truth (Center), Predictions (Right).
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Unsupervised Difficulty Estimation
[Arriaga & Valdenegro. 2020]

Idea. Look how the loss evolves for each sample on the train/val set,
accumulating loss for each sample (as a metric).

Hypothesis. Difficult examples accumulate more loss than easy ones.
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Unsupervised Difficulty Estimation
[Arriaga & Valdenegro. 2020]

We are also looking at relationship between action score and uncertainty
(entropy), and possible predictions of model and data biases.
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Lack of Uncertainty in Computer Vision

M. Valdenegro, "I Find your Lack of Uncertainty in Computer Vision
Disturbing.", Accepted at CVPR 2021 workshops.
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Lack of Uncertainty in Computer Vision

Figure 3: Multiple incorrect detections with
low confidence. Shiba Dog is detected as
44% dog and 61% carnivorous, which is
counterintuitive for humans.

Figure 4: Multiple incorrect detections with relatively
high confidence, including detecting persons and
bowls.
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Conclusions and Future Thoughts

• Uncertainty is a useful measure to detect misclassified and out of
distribution examples.

• Bayesian neural networks are not often used in practice, and many
applications would benefit from them. Computational performance is
a big reason.

• It is important to spread these techniques and their possible
applications, specially now that ML is used in real-world applications
that require to estimate model limits.

• Robotics in particular is a great application field, for example with
Bayesian Reinforcement Learning, Probabilistic Object Detection,
etc.

• I expect increase use of these techniques in practice.
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